Source code for pypath.visual.igraph_drawing.edge

#!/usr/bin/env python
# -*- coding: utf-8 -*-

#
#  This file is part of the `pypath` python module
#
#  Copyright 2014-2023
#  EMBL, EMBL-EBI, Uniklinik RWTH Aachen, Heidelberg University
#
#  Authors: see the file `README.rst`
#  Contact: Dénes Türei (turei.denes@gmail.com)
#
#  Distributed under the GPLv3 License.
#  See accompanying file LICENSE.txt or copy at
#      https://www.gnu.org/licenses/gpl-3.0.html
#
#  Website: https://pypath.omnipathdb.org/
#

"""
Drawers for various edge styles in graph plots.
"""

__all__ = [
    "AbstractEdgeDrawer", "AlphaVaryingEdgeDrawer", "ArrowEdgeDrawer",
    "DarkToLightEdgeDrawer", "LightToDarkEdgeDrawer", "TaperedEdgeDrawer"
]

__license__ = "GPL"

import sys

try:
    from cairo import LinearGradient
except ImportError:
    # No cairo support is installed. Don't worry, there will
    # be a fake Cairo module in igraph.drawing
    pass

try:
    from igraph.drawing.colors import clamp
    from igraph.drawing.metamagic import AttributeCollectorBase
    from igraph.drawing.text import TextAlignment
except ModuleNotFoundError:
    sys.stdout.write('Module `igraph` is not available.'
                     '\nSome plotting functionalities won\'t be accessible.\n')

from math import atan2, cos, pi, sin


[docs] class AbstractEdgeDrawer(object): """Abstract edge drawer object from which all concrete edge drawer implementations are derived."""
[docs] def __init__(self, context, palette): """Constructs the edge drawer. @param context: a Cairo context on which the edges will be drawn. @param palette: the palette that can be used to map integer color indices to colors when drawing edges """ self.context = context self.palette = palette self.VisualEdgeBuilder = self._construct_visual_edge_builder()
@staticmethod def _curvature_to_float(value): """Converts values given to the 'curved' edge style argument in plotting calls to floating point values.""" if value is None or value is False: return 0.0 if value is True: return 0.5 return float(value) def _construct_visual_edge_builder(self): """Construct the visual edge builder that will collect the visual attributes of an edge when it is being drawn.""" class VisualEdgeBuilder(AttributeCollectorBase): """Builder that collects some visual properties of an edge for drawing""" _kwds_prefix = "edge_" arrow_size = 1.0 arrow_width = 1.0 color = ("#444", self.palette.get) curved = (0.0, self._curvature_to_float) label = None label_color = ("black", self.palette.get) label_size = 12.0 label_family = 'sans-serif' width = 1.0 return VisualEdgeBuilder
[docs] def draw_directed_edge(self, edge, src_vertex, dest_vertex): """Draws a directed edge. @param edge: the edge to be drawn. Visual properties of the edge are defined by the attributes of this object. @param src_vertex: the source vertex. Visual properties are given again as attributes. @param dest_vertex: the target vertex. Visual properties are given again as attributes. """ raise NotImplementedError()
[docs] def draw_loop_edge(self, edge, vertex): """Draws a loop edge. The default implementation draws a small circle. @param edge: the edge to be drawn. Visual properties of the edge are defined by the attributes of this object. @param vertex: the vertex to which the edge is attached. Visual properties are given again as attributes. """ ctx = self.context ctx.set_source_rgba(*edge.color) ctx.set_line_width(edge.width) radius = vertex.size * 1.5 center_x = vertex.position[0] + cos(pi / 4) * radius / 2. center_y = vertex.position[1] - sin(pi / 4) * radius / 2. ctx.arc(center_x, center_y, radius / 2., 0, pi * 2) ctx.stroke()
[docs] def draw_undirected_edge(self, edge, src_vertex, dest_vertex): """Draws an undirected edge. The default implementation of this method draws undirected edges as straight lines. Loop edges are drawn as small circles. @param edge: the edge to be drawn. Visual properties of the edge are defined by the attributes of this object. @param src_vertex: the source vertex. Visual properties are given again as attributes. @param dest_vertex: the target vertex. Visual properties are given again as attributes. """ if src_vertex == dest_vertex: # TODO return self.draw_loop_edge(edge, src_vertex) ctx = self.context ctx.set_source_rgba(*edge.color) ctx.set_line_width(edge.width) ctx.move_to(*src_vertex.position) if edge.curved: (x1, y1), (x2, y2) = src_vertex.position, dest_vertex.position aux1 = (2 * x1 + x2) / 3.0 - edge.curved * 0.5 * (y2 - y1), \ (2 * y1 + y2) / 3.0 + edge.curved * 0.5 * (x2 - x1) aux2 = (x1 + 2 * x2) / 3.0 - edge.curved * 0.5 * (y2 - y1), \ (y1 + 2 * y2) / 3.0 + edge.curved * 0.5 * (x2 - x1) ctx.curve_to(aux1[0], aux1[1], aux2[0], aux2[1], *dest_vertex.position) else: ctx.line_to(*dest_vertex.position) ctx.stroke()
[docs] def get_label_position(self, edge, src_vertex, dest_vertex): """Returns the position where the label of an edge should be drawn. The default implementation returns the midpoint of the edge and an alignment that tries to avoid overlapping the label with the edge. @param edge: the edge to be drawn. Visual properties of the edge are defined by the attributes of this object. @param src_vertex: the source vertex. Visual properties are given again as attributes. @param dest_vertex: the target vertex. Visual properties are given again as attributes. @return: a tuple containing two more tuples: the desired position of the label and the desired alignment of the label, where the position is given as C{(x, y)} and the alignment is given as C{(horizontal, vertical)}. Members of the alignment tuple are taken from constants in the L{TextAlignment} class. """ # Determine the angle of the line dx = dest_vertex.position[0] - src_vertex.position[0] dy = dest_vertex.position[1] - src_vertex.position[1] if dx != 0 or dy != 0: # Note that we use -dy because the Y axis points downwards angle = atan2(-dy, dx) % (2 * pi) else: angle = None # Determine the midpoint pos = ((src_vertex.position[0] + dest_vertex.position[0]) / 2., (src_vertex.position[1] + dest_vertex.position[1]) / 2) # Determine the alignment based on the angle pi4 = pi / 4 if angle is None: halign, valign = TextAlignment.CENTER, TextAlignment.CENTER else: index = int((angle / pi4) % 8) halign = [ TextAlignment.RIGHT, TextAlignment.RIGHT, TextAlignment.RIGHT, TextAlignment.RIGHT, TextAlignment.LEFT, TextAlignment.LEFT, TextAlignment.LEFT, TextAlignment.LEFT ][index] valign = [ TextAlignment.BOTTOM, TextAlignment.CENTER, TextAlignment.CENTER, TextAlignment.TOP, TextAlignment.TOP, TextAlignment.CENTER, TextAlignment.CENTER, TextAlignment.BOTTOM ][index] return pos, (halign, valign)
[docs] class ArrowEdgeDrawer(AbstractEdgeDrawer): """Edge drawer implementation that draws undirected edges as straight lines and directed edges as arrows. """
[docs] def draw_directed_edge(self, edge, src_vertex, dest_vertex): if src_vertex == dest_vertex: # TODO return self.draw_loop_edge(edge, src_vertex) ctx = self.context (x1, y1), (x2, y2) = src_vertex.position, dest_vertex.position # Draw the edge ctx.set_source_rgba(*edge.color) ctx.set_line_width(edge.width) ctx.move_to(x1, y1) if edge.curved: # Calculate the curve aux1 = (2 * x1 + x2) / 3.0 - edge.curved * 0.5 * (y2 - y1), \ (2 * y1 + y2) / 3.0 + edge.curved * 0.5 * (x2 - x1) aux2 = (x1 + 2 * x2) / 3.0 - edge.curved * 0.5 * (y2 - y1), \ (y1 + 2 * y2) / 3.0 + edge.curved * 0.5 * (x2 - x1) ctx.curve_to(aux1[0], aux1[1], aux2[0], aux2[1], x2, y2) x1, y1 = aux2 else: # Draw the line ctx.line_to(x2, y2) # Determine where the edge intersects the circumference of the # vertex shape. x2, y2 = dest_vertex.shape.intersection_point(x2, y2, x1, y1, dest_vertex.size) ctx.stroke() # Draw the arrowhead angle = atan2(y2 - y1, x2 - x1) arrow_size = 15. * edge.arrow_size arrow_width = 10. / edge.arrow_width aux_points = [ (x2 - arrow_size * cos(angle - pi / arrow_width), y2 - arrow_size * sin(angle - pi / arrow_width)), (x2 - arrow_size * cos(angle + pi / arrow_width), y2 - arrow_size * sin(angle + pi / arrow_width)), ] ctx.move_to(x2, y2) ctx.line_to(*aux_points[0]) ctx.line_to(*aux_points[1]) ctx.line_to(x2, y2) ctx.fill()
[docs] class TaperedEdgeDrawer(AbstractEdgeDrawer): """Edge drawer implementation that draws undirected edges as straight lines and directed edges as tapered lines that are wider at the source and narrow at the destination. """
[docs] def draw_directed_edge(self, edge, src_vertex, dest_vertex): if src_vertex == dest_vertex: # TODO return self.draw_loop_edge(edge, src_vertex) # Determine where the edge intersects the circumference of the # destination vertex. src_pos, dest_pos = src_vertex.position, dest_vertex.position dest_pos = dest_vertex.shape.intersection_point( dest_pos[0], dest_pos[1], src_pos[0], src_pos[1], dest_vertex.size) ctx = self.context # Draw the edge ctx.set_source_rgba(*edge.color) ctx.set_line_width(edge.width) angle = atan2(dest_pos[1] - src_pos[1], dest_pos[0] - src_pos[0]) arrow_size = src_vertex.size / 4. aux_points = [(src_pos[0] + arrow_size * cos(angle + pi / 2), src_pos[1] + arrow_size * sin(angle + pi / 2)), (src_pos[0] + arrow_size * cos(angle - pi / 2), src_pos[1] + arrow_size * sin(angle - pi / 2))] ctx.move_to(*dest_pos) ctx.line_to(*aux_points[0]) ctx.line_to(*aux_points[1]) ctx.line_to(*dest_pos) ctx.fill()
[docs] class AlphaVaryingEdgeDrawer(AbstractEdgeDrawer): """Edge drawer implementation that draws undirected edges as straight lines and directed edges by varying the alpha value of the specified edge color between the source and the destination. """
[docs] def __init__(self, context, alpha_at_src, alpha_at_dest): super(AlphaVaryingEdgeDrawer, self).__init__(context) self.alpha_at_src = (clamp(float(alpha_at_src), 0., 1.), ) self.alpha_at_dest = (clamp(float(alpha_at_dest), 0., 1.), )
[docs] def draw_directed_edge(self, edge, src_vertex, dest_vertex): if src_vertex == dest_vertex: # TODO return self.draw_loop_edge(edge, src_vertex) src_pos, dest_pos = src_vertex.position, dest_vertex.position ctx = self.context # Set up the gradient lg = LinearGradient(src_pos[0], src_pos[1], dest_pos[0], dest_pos[1]) edge_color = edge.color[:3] + self.alpha_at_src edge_color_end = edge_color[:3] + self.alpha_at_dest lg.add_color_stop_rgba(0, *edge_color) lg.add_color_stop_rgba(1, *edge_color_end) # Draw the edge ctx.set_source(lg) ctx.set_line_width(edge.width) ctx.move_to(*src_pos) ctx.line_to(*dest_pos) ctx.stroke()
[docs] class LightToDarkEdgeDrawer(AlphaVaryingEdgeDrawer): """Edge drawer implementation that draws undirected edges as straight lines and directed edges by using an alpha value of zero (total transparency) at the source and an alpha value of one (full opacity) at the destination. The alpha value is interpolated in-between. """
[docs] def __init__(self, context): super(LightToDarkEdgeDrawer, self).__init__(context, 0.0, 1.0)
[docs] class DarkToLightEdgeDrawer(AlphaVaryingEdgeDrawer): """Edge drawer implementation that draws undirected edges as straight lines and directed edges by using an alpha value of one (full opacity) at the source and an alpha value of zero (total transparency) at the destination. The alpha value is interpolated in-between. """
[docs] def __init__(self, context): super(DarkToLightEdgeDrawer, self).__init__(context, 1.0, 0.0)